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SAMPLE SIZE IMPACTS ON  

HIGH LEVERAGE COLLINEARITY-ENHANCING OBSERVATIONS  
 

       Abstract: the latest known source of multicollinearity, a nonorthogonality of two 

or more explanatory variables in multiple regression models, is high leverage points. 

Interpreting a fitted regression model may become impossible by the influential 

impacts of multicollinearity. In this paper, we attempt to investigate the impact of 

different sample sizes as one of the main causing factors of high leverage points to be 

collinearity-influential observations in non-collinear data.  To do so, the influence of 

changing sample size on High Leverage Collinearity-Influential Measure (HLCIM) 

and Condition Number (CN) was studied. According to the simulation results, by 

increasing the percentage of high leverage points for each magnitude of contamination and 

fixed sample size and also by increasing magnitude of contamination for each percentage 

of high leverage point and fixed sample size, the CN and the absolute HLCIM values 

increase. The simulation results have been confirmed by a well-known real data set. 

        Keywords: High Leverage Collinearity-Influential Measure (HLCIM); High 

leverage collinearity-enhancing observations; condition number; Diagnostic Robust 

Generalized Potential (DRGP) method. 
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         1.  Introduction 

         Kamruzzaman and Imon (2002) have announced high leverage points as the 

latest known source of multicollinearity. Multicollinearity is a near-linear dependency 

of two or more explanatory variables in multiple regression models which may have 

significant influential impacts on regression analysis. High leverage points may change 

a non-collinear data set to be collinear and vice versa (Bagheri, 2011). Bagheri, 2011 

has called high leverage points which cause multicollinearity as high leverage 

collinearity-enhancing observations and those points which decrease multicollinearity 

are referred as high leverage collinearity-reducing observations. It is important 

mentioning that collinearity-enhancing observations are crucial points in non-collinear 

data sets for changing the pattern of multicollinearity. Habshah and Bagheri (2015) has 
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introduced a robust diagnostic measures based on minimum covariance determination 

approach for identification of these points and Bagheri and Habshah (2015) has 

defined diagnostic plots for  their detection. 

         Figure 1 illustrates the influence of collinearity-enhancing observations on non-

collinear Artificial data set which has taken from Bagheri (2011). Table 1 is presented 

this Artificial data set. This figure part (a) presents a non-collinear data set. According 

to this figure, there is no collinearity in the data set. However, by modifying the data 

set to have a collinearity-enhancing observation, it is obvious that this data set changed 

to be collinear date set (Figure 1 part (b)).  

 

                       Table 1.Artificial data set 

 
 Non-collinear 

Data Set 

Modified Data With High Leverage 

 Collinearity-Enhancing Observations 

x1 x2 x1 x2 

4 10 4 10 

5 7 5 7 

3 2 28 30 

4 3 29 32 

2 8 2 8 

5.5 10 5.5 10 

4.5 6 4.5 6 

3.5 5 3.5 5 

3 7 3 7 

5 10 5 10 

1 4 1 4 

2 

 

6 

 

30 

 

32 

 

 
        Habshah et al. (2011) investigated the effect of some factors for changing high 

leverage points to be collinearity-influential observations in the non-collinear data set. 

These factors can be listed as percentage of high leverage points, Magnitude of 

Contamination (MC) and the position of high leverage points. To achieve their aims, 

they proposed High Leverage Collinearity-Influential Measure (HLCIM). However, 

they didn’t consider the influence of changing the sample size which was the limitation 

of their study. In addition, Bagheri et al. (2010) has studied the influence of these 

factors on high leverage points to be collinearity-influential observations in the collinear 

data set. 
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Figure 1. (a) Original Artificial Data Set (2) (Non-collinear), (b) Modified 

Artificial Data Set (2) with a Collinearity-enhancing Observation (Bagheri, 2011).  

 

  

          In this paper, Monte Carlo simulation studies have been performed to study the 

influence of sample size as one of the most important factors in causing high leverage 

points to bring multicollinearity in non-collinear data sets. Insight is gained only by 

simulation experience and by real data set. This paper is organized as follows. High 

leverage and High Leverage Collinearity-Influential Measures are introduced in 

Section 2. The effect of high leverage collinearity-influential observations in HLCIM 

and Condition Number (CN) of X matrix on a well-known non-collinear set is 

investigated in Section 3. The Monte Carlo simulation studies have been performed in 

Section 4. Section 5 consists of a brief conclusion of the results. 

  

          2.   High leverage and High Leverage Collinearity-Influential Measures  

          There are different high leverage diagnostic measures such as Three-Sigma edit 

rule (Maronna et al. 2006), hat matrix (see Kutner et al. 2005 ), Mahalanobis Distance 

(Rousseeuw and Leroy, 1983), Robust Mahalanobis Distance (Rousseeuw, 1985), 

Potential measure (Hadi, 1992), Generalized potential measure (Imon, 2002). 

         The commonly used diagnostics fail to identify high leverage points correctly 

when a group of high leverage points is present in a data set due to the masking and/or 

swamping effects (Rousseeuw and Leroy, 1987).  

          Let’s define a multiple regression model as: 

  XY         (1)  

Collinearity-enhancing observations 
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where Y is an (n1) vector of dependent variables, X is an (np) matrix of explanatory 

variables,
   is a (p1) vector of unknown finite parameters to be estimated and  is 

an (n1) vector of random errors. Rousseeuw (1985) introduced Robust Mahalanobis 

Distance (RMD), based on the Minimum Volume Ellipsoid (MVE) (for more details, 

one can refer to Rousseeuw ,1983, 1984), RMD(MVE), as: 

 

))(()())(((MVE)RMD 1'

i XXXXX RRR TCT            ni ,...,2,1              (2) 

 

where )(XRT  and )(XRC  are robust locations and shape estimates of the MVE, 

respectively. The robust alternative diagnostic methods such as RMD(MVE) can detect 

the high leverage points correctly but they have a tendency to identify too many low 

leverage points as high leverages which is not also desired. Habshah et al. (2009) 

attempt to make a compromise between these two approaches. They proposed an 

adaptive method where the suspected high leverage points are identified by robust 

methods and then after diagnostic checking, the low leverage points (if any) are put 

back into the estimation data set. Following the idea of Imon (2002) in developing 

Generalized Potentials, they proposed the diagnostic robust generalized potential 

(DRGP) based on MVE. DRGP(MVE) procedure can be summarized as follows. 

 

Step1: Calculate RMD(MVE) in Equation (2) and consider a non-

parametric cutoff point to determine the suspected high leverage points 

as: 

(MVE))(RMDMAD(MVE))(RMDmedian ii c    ni ,...,2,1   (3) 

where c is constant value equals to 2 or 3. Hence, the members of 

group D are observations whose RMD(MVE)  values exceeded the 

cutoff point in Equation (3). 

 

Step 2: Compute GP, iip ,as follows to see whether all members of the 

deletion set have potentially high leverages or not: 
 

First denote remaining cases in the data set as R and suspected high 

leverage points as D. if hat matrix defined based on a group of deleted 

cases indexed by D, we can define:  

ix
1)(   R

'

R

'

i XXx
D)(

iih  ni ,...,2,1    .                              (4) 

It should be noted that 
)( D

iih 
is the ith diagonal elements of '

X)XX(X
1

R

'

R



matrix. Imon (2002) also introduced GP as: 
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Step 3: If all members of the D set are greater than: 

)MAD()median( iiii pcp 
                                                       (6)

 

,we declare them as high leverage points. Otherwise, those observations are 

put back into the estimation subset R. 

 

         The generalized potential values based on the final deletion set will be called 

DRGP(MVE) namely as 
*

iip   and the points which are detected will be finally declared 

as high leverage points. Leverage measures based on DRGP(MVE) have proven to be 

very effective in the identification of multiple high leverage points (Habshah et al., 2009). 

        In the multiple regression model, multicollinearity maybe be defined as linear 

dependences of the columns of X matrix. There are different multicollinearity 

diagnostic methods such as Variance Inflation Factor (VIF) by Marquardt (1970) and 

Condition Number (CN) by Belsley et al. (1980). For comprehensive details about these 

diagnostics tools, one can referee to Montgomery et al. (2001).  

        Singular-value decomposition of (n×p) X matrix is identified by Belsley et al. 

(1980) as: 
'UDVX                                                                    (7) 

where U ,V , and D are  (n×p), (p×p),and (p×p) matrices. U is the matrix which 

columns are the eigenvectors associated with the p non-zero eigen values of XX ' and

IUU '
. The matrix of eigenvectors of XX ' is V, and IVV '

, and D is a 

diagonal matrix with non-negative diagonal elements j ( j=1,2,…, p) which is called 

singular-values of X.  Belsley et al. (1980) also defined the CI of the X matrix as: 

j

jk


max                               j=1,…,p                   (8) 

where
p ,...,, 21  are the singular values of X matrix. It is noticeable that the largest 

value of 𝜇𝑗 can be defined as CN of X matrix. There are Belsley (1991)’s rule of thumb 

for indicating the degree of multicollinearity from CN value which has been accepted 

as the standard in application in the literature. Belsley (1991) recommended that CN 
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values of X matrix between 10 and 30 is indicated as moderate multicollinearity while 

the values more than 30 resulted as severe multicollinearity.  

         Collinearity-influential observations are those observations which change the 

multicollinearity pattern whether create or hide it in a data set (Hadi, 1988, Sengupta 

and Behimasankaram, 1997; Gross, 2003). Hadi (1988) introduced a collinearity-

influential measure as follows:                     

k

kk i

i




)(
                 ni ,...,2,1                                        (9) 

where k is the Condition Number of X matrix and )(ik is the Condition Number 

of X matrix when  the ith  row of X matrix has been deleted. Hadi’s measure has 

the lack of symmetry which is due to the additive change in the Condition 

Number of X.  To overcome the weakness of Hadi’s measure, Sengupta and 

Behimasankaram (1997) introduced the following collinearity-influential 

measure as: 

)log(
)(

k

k
l

i

i          ni ,...,2,1                                                    (10) 

       It is important mentioning that a large negative or positive value of i  
and il

indicates that the ith observation is a collinearity-enhancing or collinearity-reducing 

observation. Habshah et al. (2011) proposed a new measure to study the influence of high 

leverage points in the multicollinearity pattern of a data based on the idea of Sengupta 

and Bhimasankaram in proposing il  
as collineaity-influential measure. If D is the 

group of high leverage collinearity-influential observations, we define High Leverage 

Collinearity-Influential Measure (HLCIM) as follows: 

)log(
)(

k

k
HLCIM

D
                                                               (11) 

where )(Dk is the Condition Number of X matrix when D rows of X matrix have been 

deleted. The HLCIM shows whether these leverage points can cause multicollinearity 

or not in the data set. Habshah et al. (2011) similar to Sengupta and Bhimasankaram’s 

measure have defined cutoff points for HLCIM. If 0)log(
)(


k

k D
then the D group of 

high leverage points is referred as high leverage collinearity-enhancing observations. 

Otherwise, the deletion of the D group high leverage points may increase the degree of 

multicollinearity. Thus, in this situation these high leverage points are referred as 

collinearity-reducing observations.  
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         3. Real data set 

          In this section, we will consider a real non-collinear data set that shows how 

changing the sample size can change the influence of high leverage points to be 

collinearity-enhancing observations. Commercial Properties data set which has 

taken from Kutner et al. (2005) is a three-predictor data set contains 81 

observations. This data set contains nineteen high leverage points (observations 

1, 2, 3, 6, 7, 8, 17, 21, 26, 29, 37, 45, 53, 54, 58, 61, 62, 72, and 79) while none 

of these leverages cause multicollinearity(Habshah et al. ,2010, Bagheri et al., 

2011, Bagheri, 2011). To investigate the influence of changing sample size in 

changing the multicollinearity pattern of this data set, two different sample 

sizes with first 40 and first 60 observations of this data set has been chosen. 

Table 2 presents the multicollinearity diagnostics for these two original sample 

sizes data set. According to this table, these two selected sample sizes are non-

collinear. To make multicollinearity in this data set, 5 and 10 percent of last 

observations of these two sample sizes have been fixed by large values of 100 

and 200. HLCIM and CN of these two modified sample sizes are presented in 

Table 3. The result of this table indicates that by fixing sample size and 

Magnitude of Contamination (MC) and increasing the percentage of 

contamination, CN and the absolute value of HLCIM both increase. 

Furthermore, the same result can be drawn, when we increase MC and fix 

sample size and percentage of high leverage points. However, when the sample 

size is increased while MC and percentage of high leverage points are fixed, 

the value of CN decreases and the absolute value of HLCIM increases.  

 
Table 2. Multicollinearity diagnostics for different sample sizes of Commercial  

Properties data set  

 

 

Diagnostics n 1 2 3 

Pearson correlation coefficient 40 r12= 0.1830 r13= -0.1766 r14= -0.3720 

60 r12= 0.2373 r13= -0.1867 r14= -0.3134 

VIF > 5 
40 1.0495 1.1800 1.1772 

60 1.0756 1.1512 1.1256 

Condition index of  X matrix  > 10  
40 1 1.3128 1.5461 

60 1 1.3462 1.4835 
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Table 3. HLCIM and CN values for the modified  

Different sample sizes of Commercial Properties data set 

  
n=40, MC=100 

 

n=40, MC=200 

HLCIM CN   HLCIM CN 

5 -1.0949 19.6792 5 -1.4194 41.5364 

10 -1.2643 28.2542 10 -1.5837 59.5891 

  
n=60, MC=100 

 

n=60, MC=200 

HLCIM CN   HLCIM CN 

5 -1.1088 18.7702 5 -1.4327 39.5687 

10 -1.2607 26.1666 10 -1.5884 55.0485 

 

        4. Simulation study 

          The objective of this simulation study is to investigate the effect of sample size and 

different magnitude, contamination, and percentage of high leverage points on HLCIM 

and CN. In this simulation study, we considered different sample sizes that varied 

from 20, 60, 100, and 300 and different Magnitude of Contamination (MC) values 

equal to 10 and 20. The results of simulation study of Habshah et al. (2011) for fixed 

sample size (equal to 100) reveal that when contamination exists in only X1, the 

contamination did not cause multicollinearity problem for the data set. However, when 

contamination exists in X1 and X2 and X1, X2 and X3 multicollinearity will be present 

in the data set. Hence, in studying the influence of different sample sizes on HLCIM 

and CN values, we only consider contamination which exists in all three explanatory 

variables. Table 4 shows the HLCIM and the CN values for different sample sizes and 

different percentages and different magnitudes of high leverage collinearity-enhancing 

observations. The values of CN for X matrix without high leverage points for sample 

sizes 20, 60, 100, and 300 are equal to 1.5978, 1.2752, 1.2102, and 1.1091, respectively.       

        These results indicate that the simulated data sets are non-collinear. However, the 

values of CN for contaminated data reveal the presence of multicollinearity evident by CN 

and HLCIM values which become large and negative large, respectively (Table 4). By 

increasing the percentage of high leverage points for each MC and fixed n and also by 

increasing MC for each percentage of high leverage point and fixed n, the CN and the 

absolute HLCIM values increase. However, by increasing the n for fixed MC and fixed 

percentage of high leverage pints, the CN values slightly decrease. 
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Table 4. HLCIM and CN values for diffident sample sizes and different percentages 

and magnitudes of high leverage collinearity-influential observations 

  
n=20, MC=10 

 

n=20, MC=20 

HLCIM CN   HLCIM CN 

5 -0.9661 13.7911 5 -1.2660 27.8221 

10 -1.1103 19.6207 10 -1.4162 39.3272 

15 -1.1938 24.4832 15 -1.4976 49.0967 

20 -1.2478 27.8097 20 -1.5501 56.0013 

25 -1.2923 31.5767 25 -1.5964 64.3129 

  
n=60, MC=10 

 

n=60, MC=20 

HLCIM CN   HLCIM CN 

5 -1.0120 12.7763 5 -1.3137 25.6585 

10 -1.1592 18.1459 10 -1.4622 36.3971 

15 -1.2485 22.2854 15 -1.5483 44.5819 

20 -1.30974 25.8682 20 -1.6073 51.7914 

25 -1.3532 29.0820 25 -1.6531 57.6371 

  
n=100, MC=10 

 

n=100, MC=20 

HLCIM CN   HLCIM CN 

5 -1.0253 12.5505 5 -1.3285 25.1005 

10 -1.1760 17.7956 10 -1.4741 35.4610 

15 -1.2616 21.8333 15 -1.5626 43.6404 

20 -1.3218 25.2510 20 -1.6231 50.2790 

25 -1.3720 28.3189 25 -1.6679 56.3383 

  
n=300, MC=10 

 

n=300, MC=20 

HLCIM CN   HLCIM CN 

5 -1.0431 12.1559 5 -1.3442 24.2507 

10 -1.1938 17.1748 10 -1.4931 34.3476 

15 -1.2796 21.0600 15 -1.5795 42.1525 

20 -1.3417 24.3259 20 -1.6433 48.7147 

25 

 

-1.3903 

 

27.3057 

 

25 

 

-1.6919 

 

54.6307 

 

5.Conclusion 

       Multicollinearity consequences are obvious to the regression analysis. Some of 

these drawbacks are producing unstable and inconsistent parameters estimates, and 
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insignificant regression coefficients, where in fact it is significant. There are lots of 

referable works which devoted to this area. However, little work has been explored 

when high leverage points are the cause of multicollinearity in the data set. Thus, it is 

very essential to investigate the factors which cause any high leverage points to 

change to collinearity-influential observation. The main focus of this paper was to 

study the effect of changing the sample size on multicollinearity pattern of non-

collinear. Monte Carlo simulations were carried out to achieve this aim. The 

simulation results indicated that the sample size has a principal impact on changing 

the multicollinearity pattern of non-collinear data sets.  
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